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IR-renormalon contributions to the structure functions g3 and g5
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Abstract. We calculate the leading 1/Nf perturbative contributions to the polarized nonsinglet structure
functions g3 and g5 to all orders in αs. The contributions from the first renormalon pole are determined. It
is a measure for the ambiguity of the perturbative calculation and is hypothetically assumed to dominate
the power corrections. The corrections ∆g3 and ∆g5 are given as functions of the Bjorken variable x and
turn out to be negligible. The anomalous dimensions of the leading twist operators are obtained in the
next-to-leading order.

PACS. 13.60.-r Photon and charged-lepton interactions with hadrons – 12.15.-y Electroweak interactions

It is well known that the perturbation series for moments
of twist-2 structure functions is an asymptotic one. This
property can be studied in detail in the 1/Nf -limit, in
which the complete series can be calculated explicitly. For-
mally this series is given by an integral over the posi-
tive real axis in the Borel plane. This integral is ambigu-
ous due to singularities on the integration path, the so
called IR-renormalon poles. The residues of these poles
are a measure for the ambiguity of the perturbation series.
The so-called hypothesis of UV-dominance allows further-
more to interpret this ambiguity as an estimate for the
power corrections. This interpretation is controversial but
it clearly provides one piece of information to clarify the
relationship between perturbative 1/ lnQ2 corrections and
the 1/Q2 power corrections. The program just sketched
was already applied to all twist-2 structure functions ex-
cept g3(x,Q2) and g5(x,Q2) [1]–[3]. In this contribution
we investigate these remaining two cases. Let us note that
similar renormalon analyses have recently been applied to
a large range of other QCD observables [4]–[12].

The Borel transformation of a perturbative series

R = r0a+ r1a
2 + r2a

3 = . . . =
∞∑
n=0

rna
n+1 , a = αs · 4π

(1)
is defined as

B[R](u) =
∞∑
n=0

un
rn
n!

. (2)

R can be reobtained from its Borel transform by an inte-
gration over the positive real axis as

R =
∫ ∞

0

du e−u/aB[R](u) . (3)

The coefficients of the original power series can also be ob-
tained individually by taking the derivatives with respect
to u

rk =
dk

duk
B[R](u)

∣∣∣∣∣
u=0

. (4)

B[R] has pole singularities on the real axis, the so-
called renormalons [13]. The poles on the positive u-axis,
which are called IR-renormalons because they can be
traced back to low momentum contribution to the loop
integrals, lead to ambiguities in the back-transformation
(3) because it is unclear whether they have to be passed
above or below the real axis. The fact that no unambigu-
ous back-transformation exists reflects the fact that the
perturbative expansions are asymptotic [14,15]. The am-
biguities are of the order of magnitude

∆R = e−u/aRes
(
B[R](u)

)∣∣∣∣∣
u=pole position

, (5)

and can be interpreted as a measure for generic uncer-
tainties of perturbative predictions or in other words as
an estimate for corrections beyond leading twist pertur-
bation theory [4].

In connection with the investigation of renormalons
the NNA-approximation (naive non-Abelianization) [16]
is of particular interest because in the Borel plane it leads
to an effective gluon propagator of a very simple form
allowing a calculation to all orders in the coupling con-
stant. In the NNA-approximation we start with a restric-
tion to the leading 1/Nf -terms (Nf : number of quark fla-
vors), which is the sum of all diagrams with only one ex-
changed gluon but an arbitrary number of quark loops.
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The missing terms are then approximated by the replace-
ment Nf → −24π2β0 = Nf − 33/2, which corresponds to
a restriction to the leading terms of an expansion in pow-
ers of the one loop QCD β-function. The resummation of
all corresponding diagrams leads to the Borel transformed
effective gluon propagator

B[g2Dab
µν(k)](s) = δab

gµν − kµkν
k2

k2

(
µ2e−c

−k2

)s
(6)

with the new variable s := β0u [5,6,17]. c is a renor-
malization scheme dependent constant, in the MS-scheme
c = −5/3. The expression (6) differs from the original
gluon propagator essentially only by the power of k2 in
the denominator. Consequently a calculation of a Borel
transform in the NNA-approximation in all orders of the
coupling constant is not more complicated than the cor-
responding normal next-to-leading-order calculation.

We now apply the described method to the structure
functions g3 and g5 measurable in polarized deep inelastic
lepton-nucleon scattering. These structure functions are
defined by the following terms in the decomposition of
the hadronic scattering tensor

Wµν = −mN (pµSν + Sµpν)
p · q g3 +

2mNS · q gµν
p · q g5 + . . . .

(7)
We adopted the conventions of [18], a comparison with
other definitions used in the literature is given in [19].
Since the contributions to Wµν shown in (7) are parity
violating they involve weak interactions. We are looking
at the case of pure Z-boson exchange and the interference
part of Z- and γ-exchange. In order to avoid operator
mixing we consider the nonsinglet part, which is obtained
by taking the difference between proton- and neutron-
structure functions [20,21]. To simplify the notation we
write gj := gpj −gnj , j = 3, 5 . Neglecting higher twist con-
tributions, the moments of the structure functions have
the form

gj,n :=
∫ 1

0

dxxngj(x,Q2) = Aj,nCj,n(Q2) , (8)

where Aj,n are the matrix elements of the leading twist
nonsinglet operators and Cj,n(Q2) the corresponding Wil-
son coefficients. The Wilson coefficients can be calculated
using their connection with the forward Compton scatter-
ing amplitude

tµν = −m(pµSν + Sµpν)
p · q 2

∑
n

a3,nC3,n(Q2)ωn+1

+
2mS · q gµν

p · q 2
∑
n

a5,nC5,n(Q2)ωn+1 + . . . ,(9)

where tµν and aj,n refer to quark states instead of nucleon
states. Adopting a normalization where the non-vanishing
Wilson coefficients take the form

Cj,n(Q2) = 1 +O(g2) (10)

the matrix elements of the leading twist operators are

a3,n = 2VA , n = 0, 2, 4 . . .
a5,n = VA , n = 1, 3, 5 . . . (11)

with the vector coupling constant V and the axial coupling
constant A. The Borel transformed Wilson coefficients are
now obtained by the calculation of B[tµν ] and comparing
the result expanded in ω with (9). In the calculations we
have to handle the matrix γ5 in d 6= 4 dimensions. We use
the t’Hooft-Veltman scheme γ5 = iγ0γ1γ2γ3, {γ5, γ

µ} = 0
for µ = 0, 1, 2, 3 and [γ5, γ

µ] = 0 otherwise [22]. We get

B[C3,n](s) =

CF

(
µ2

Q2

)2− d2 (µ2e−c

Q2

)s
Γ (d2 )Γ (d2 − 2− s)

(4π)d/2Γ (s+ 1)Γ (d− 1− s)

×
{

(d− 2)
Γ (s+ n+ 3− d

2 )
n!

+
(
s+ 2− d

2

)

×
(

(d− 4)− 2
)Γ (s+ n+ 2)Γ (s+ n+ 4− d

2 )
n!Γ (s+ n+ 4)

+
d

2
(6− d)

nΓ (s+ n+ 2)Γ (s+ n+ 3− d
2 )

n!Γ (s+ n+ 4)

+
d

4

(
4(d− 4)2 − 4(d− 4)(d− 2) + (d− 2)2

)
×Γ (s+ n+ 2)Γ (s+ n+ 3− d

2 )
n!Γ (s+ n+ 4)

+(d− 2− s)(d− 4)
nΓ (s+ n+ 1)Γ (s+ n+ 3− d

2 )
n!Γ (s+ n+ 3)

+4
(
s+ 2− d

2

) n∑
k=0

Γ (s+ k + 3− d
2 )

k!(s+ k + 1)

−2d
n∑
k=0

Γ (s+ k + 3− d
2 )

k!(s+ k + 2)

+
(

(2s+ 4− d)
d− 4

2
− d
) n∑
k=0

kΓ (s+ k + 2− d
2 )

k!(s+ k + 1)

+d
n∑
k=0

kΓ (s+ k + 2− d
2 )

k!(s+ k + 2)

+
(
d

2
− 2− s

)(
2(d− 4)2 − 2(d− 4)(d− 2) + (d− 2)2

)
×

n∑
k=0

Γ (s+ k + 2− d
2 )

k!(s+ k + 1)

+(d−4−2s)(d−2−s)d−4
d−2

n∑
k=0

kΓ (s+ k + 2− d
2 )

k!(s+ k)

}
(12)

for n = 0, 2, 4 . . . and



B. Lehmann-Dronke et al.: IR-renormalon contributions to the structure functions g3 and g5 99

B[C5,n](s) =

CF

(
µ2

Q2

)2− d2 (µ2e−c

Q2

)s
Γ (d2 )Γ (d2 − 2− s)

(4π)d/2Γ (s+ 1)Γ (d− 1− s)

×
{

(d− 2)
Γ (s+ n+ 3− d

2 )
n!

+
(
s+ 2− d

2

)(
2− (d− 4)

)
×Γ (s+ n+ 1)Γ (s+ n+ 4− d

2 )
n!Γ (s+ n+ 3)

+
(
s+ 2− d

2

)(
(d− 4)− 2

)
×nΓ (s+ n+ 1)Γ (s+ n+ 3− d

2 )
n!Γ (s+ n+ 3)

+
(

2(d−2−s)(d− 4)2 +
1
2

(6s+12−5d)(d− 4)(d− 2)

+
1
4

(3d−8−4s)(d− 2)2
)

×Γ (s+ n+ 1)Γ (s+ n+ 3− d
2 )

n!Γ (s+ n+ 3)

+4
(
s+ 2− d

2

) n∑
k=0

Γ (s+ k + 3− d
2 )

k!(s+ k + 1)

−2d
n∑
k=0

kΓ (s+ k + 2− d
2 )

k!(s+ k + 1)

+
(
d

2
− 2− s

)(
2(d− 4)2 − 2(d− 4)(d− 2) + (d− 2)2

)
×

n∑
k=0

Γ (s+ k + 2− d
2 )

k!(s+ k + 1)

}
(13)

for n = 1, 3, 5 . . . .
Since the NNA-approximation is exact in one loop or-

der we get the next-to-leading-order result from (12) and
(13) by taking s = 0 according to (4). An expansion in
ε = 2− d

2 leads to

C3,n = 1 + CF
g2

(4π)2

{(
1
ε
− γ + ln

4πQ2

µ2

)
×
(
− 4 +

4
n+ 1

+
4

n+ 2
− 4
n+ 3

+ 4Sn

)
−3

2
+

9
n+ 1

− 6
n+ 3

+
(

3 +
2

n+ 2
− 4
n+ 3

)
Sn

+4
n∑
k=1

1
k + 2

Sk+2
n∑
k=1

1
(k + 1)(k + 2)

Sk−1

}
, (14)

C5,n = 1 + CF
g2

(4π)2

{(
1
ε
− γ + ln

4πQ2

µ2

)
×
(
− 3 +

2
n+ 1

+
2

n+ 2
+ 4Sn

)

−1− 4
n+ 1

+
6

n+ 2
+
(

3− 2
n+ 1

+
2

n+ 2

)
Sn

+8
n∑
k=1

1
k + 1

Sk−1

}
, (15)

where Sn is defined by Sn :=
∑n
k=1

1
k . From the last two

equations we read off the renormalization constants for
the corresponding composite operators (defined by Or =
Z−1O0) in the MS-scheme [23].

Zg3,n = 1 + CF
g2

(4π)2

(
1
ε
− γ + ln 4π

)
×
(
− 4 +

4
n+ 1

+
4

n+ 2
− 4
n+ 3

+ 4Sn

)
, (16)

Zg5,n = 1 + CF
g2

(4π)2

(
1
ε
− γ + ln 4π

)
×
(
− 3 +

2
n+ 1

+
2

n+ 2
+ 4Sn

)
. (17)

Finally we get for the anomalous dimensions γ := µ
Z
∂Z
∂µ

∣∣∣
g0

(see e. g. [24]) in one loop order

γg3,n = CF
g2

(4π)2

×
(

8− 8
n+ 1

− 8
n+ 2

+
8

n+ 3
− 8

n∑
k=1

1
k

)
, (18)

γg5,n = CF
g2

(4π)2

(
6− 4

n+ 1
− 4
n+ 2

− 8
n∑
k=1

1
k

)
. (19)

To our knowledge these anomalous dimensions have not
been calculated before. Higher order results could be ob-
tained in the—no longer exact—NNA-approximation as
well using (4).

To investigate the renormalons we can set d = 4. From
(12) and (13) we get

B[C3,n](s) =

CF

(
µ2e−c

Q2

)s 1
(4π)2Γ (s+ 1)(2− s)s ·

1
s− 1

×
{

2
Γ (s+ n+ 1)

n!
− 2s

(
Γ (s+ n+ 2)

)2

n!Γ (s+ n+ 4)

+4
nΓ (s+ n+ 2)Γ (s+ n+ 1)

n!Γ (s+ n+ 4)

+4
Γ (s+ n+ 2)Γ (s+ n+ 1)

n!Γ (s+ n+ 4)

+2
n∑
k=0

[
2s
Γ (s+ k + 1)
k!(s+ k + 1)

− 4
Γ (s+ k + 1)
k!(s+ k + 2)

−2
kΓ (s+ k)
k!(s+ k + 1)

+ 2
kΓ (s+ k)
k!(s+ k + 2)

− 2s
Γ (s+ k)

k!(s+ k + 1)

]}
,

(20)
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B[C5,n](s) =

CF

(
µ2e−c

Q2

)s 1
(4π)2Γ (s+ 1)(2− s)s ·

1
s− 1

×
{

2
Γ (s+ n+ 1)

n!
+ 2s

Γ (s+ n+ 1)
n!(s+ n+ 2)

−2s
n
(
Γ (s+ n+ 1)

)2

n!Γ (s+ n+ 3)
+ 4(1− s)

(
Γ (s+ n+ 1)

)2

n!Γ (s+ n+ 3)

+4
n∑
k=0

[
s
Γ (s+ k + 1)
k!(s+k+1)

−2
kΓ (s+ k)
k!(s+k+1)

−s Γ (s+ k)
k!(s+k+1)

]}
.

(21)

The pole at s = 0 corresponds to the usual 1/ε pole in
dimensional regularization. In both cases we find contri-
butions from the two IR-renormalons at s = 1 and s = 2.
The corrections corresponding to these renormalons are
suppressed by factors 1

Q2 or ( 1
Q2 )2 respectively. We adopt

the hypothesis that they dominate these power corrections
[2–4]. For the dominant pole at s = 1 and taking µ2 = Q2

we find for the residues

Res
(
B[C3,n](s)

)∣∣∣∣∣
s=1

=

−CF e
−c

(4π)2

{
2n+ 6− 4

n+ 1
− 4
n+ 2

− 16
n+ 3

+
24

n+ 4
− 4

n∑
k=1

1
k

}
, (22)

Res
(
B[C5,n](s)

)∣∣∣∣∣
s=1

=

−CF e
−c

(4π)2

{
2n+ 10− 8

n+ 1

− 4
n+ 2

− 8
n+ 3

− 8
n∑
k=1

1
k

}
, (23)

which are connected with the renormalon contributions
according to (5) by

∆Cj,n(Q2) = ±
(
Λ2

Q2

)
1
β0

Res
(
B[Cj,n](s)

)∣∣∣∣∣
s=1

+O

(
g2

Q2
,

1
Q4

)
. (24)

According to the heuristic theoretical framework (24) is
supposed to give only the order of magnitude of power
corrections. However despite the fact that the renormalon
method has been discussed controversially [25] it has been
checked experimentally in those cases for which data are
available that it leads to reasonable estimates for the x-
dependence of the power corrections [26]. The normaliza-
tion turned also out to be reasonable, but this might be

accidental. In the framework of the equivalent dispersive
approach [9] the assumption was made that the prefactor
defining the normalization has an universal character [27].
We should also note that ambiguities may arise in the x-
dependence of power corrections depending on the choice
of the argument of the running coupling. The discrepancy
observed in [28] has not yet been understood completely.

According to (8) and (24) we get for the complete
structure functions

gj,n(Q2) = Aj,n

[ N0∑
k=0

Ckj,n(Q2)(g2)k +∆Cj,n(Q2)
]

(25)

with the perturbative expansion of the Wilson coefficients
Cj,n=

∑
kC

k
j,n(g2)k and for the renormalon corrections of

the same structure functions

∆gj,n(Q2) = Aj,n∆Cj,n(Q2) . (26)

The unknown matrix elements Aj,n are eliminated taking
the ratio
∆gj,n(Q2)
gj,n(Q2)

=
∆Cj,n(Q2)∑N0

k=0 C
k
j,n(g2)k +∆Cj,n(Q2)

=
±
(
Λ2

Q2

)
1
β0

Res
(
B[Cj,n](s)

)∣∣∣
s=1

+O
(
g2

Q2 ,
1
Q4

)
1 +

∑N0
k=1 Cj,n(Q2)k(g2)k +∆Cj,n(Q2)

=
[
±
(
Λ2

Q2

)
1
β0

Res
(
B[Cj,n](s)

)∣∣∣∣
s=1

+O

(
g2

Q2
,

1
Q4

)]
×
[
1 +O

(
g2,

1
Q2

)]
= ±

(
Λ2

Q2

)
1
β0

Res
(
B[Cj,n](s)

)∣∣∣∣
s=1

+O

(
g2

Q2
,

1
Q4

)
.

(27)

So in leading order the corrections are given by

∆gj,n(Q2) = ±
(
Λ2

Q2

)
1
β0

Res
(
B[Cj,n](s)

)∣∣∣∣
s=1

· gj,n(Q2) . (28)

The determination of all moments is equivalent to express-
ing ∆gj(x) as a convolution

∆gj(x) = ±
(
Λ2

Q2

)
1
β0

∫ 1

x

dy
y
CIR1
j (y)g(x/y) , (29)

where the functions CIR1
j (y) defined by

Res
(
B[Cj,n](s)

)∣∣∣∣∣
s=1

=
∫ 1

0

dy ynCIR1
j (y) (30)

are obtained from (20) and (21):

CIR1
3 (y) =

CF e−c

(4π)2

{
2δ′(y − 1)− 6δ(y − 1) + 4 + 4y

+ 16y2 − 24y3 − 4
(1− y)+

}
, (31)
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Fig. 1. The fit for gZ3 (full line) and the corresponding renor-
malon contribution multiplied by a factor 10 (dotted line). The
dashed lines show the size of the ambiguity for gZ3 , i. e. gZ3 ±∆gZ3

Fig. 2. The same as Fig. 1 for gZ5

CIR1
5 (y) =

CF e−c

(4π)2

{
2δ′(y − 1)− 10δ(y − 1) + 8 + 4y

+ 8y2 − 8
(1− y)+

}
, (32)

where 1
(1−y)+

is defined by
∫ 1

0
dy f(y) 1

(1−y)+
=∫ 1

0
dy f(y)−f(1)

1−y . We use the quark distributions given in
[29] and the parton model expressions

gZ3 = 2x
∑
q

gqV g
q
A(∆q −∆q) , (33)

2xgZ5 = gZ3 , (34)

gγZ5 = 2x
∑
q

eqgqA(∆q −∆q) , (35)

Fig. 3. The same as Fig. 1 for gγZ3

Fig. 4. The same as Fig. 1 for gγZ5

2xgγZ5 = gγZ5 . (36)

We choose the momentum transfer to be Q2 = 4 GeV2.
The integrals in (29) are evaluated numerically and the
results are plotted in the figures 1 to 4.

We have thus completed our analysis of the renormalon
ambiguities for all twist-2 structure functions. In all cases
the size of these ambiguities turned out to be very small.
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